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Surface roughness and transverse magnetic 
field dependence of the Hall coefficient and the 
magnetoresistance in thin metal films 
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Defining an effective relaxation time which depends on the root mean square (rms) surface 
roughness and on the angle of incidence of electrons and then using the Boltzmann transport 
equation general expressions have been derived for the Hall coefficient and conductivity in 
thin metal films subjected to a transverse magnetic field. In the weak- and strong-field limits 
simple analytical equations have been proposed which reveal slight size effects in the Hall 
coefficient and in the magnetoresistance as well as a weak field dependence of these transport 
parameters in agreement with previous experiments. The theoretical predictions of the present 
model have been compared with those of the mean free path (mfp) method which constituted 
an extension of the Cottey model. In conclusion a correlation between the respective size 
parameters, A, in the present model and, #, in the mfp method is proposed. 

1. In t roduct ion  
It is well-known that the electrical conductivity is 
lower in thin films than in the bulk: a geometrical 
effect that in the past [1-3] has been generally inter- 
preted in terms of the Fuchs Sondheimer (FS) theory 
[4]. However in the past few years more sophisticated 
size effect models for the film conductivity have been 
proposed [5-14]. Many investigations are concerned 
with extensions of the FS model [6, 7, 10-12] or the 
Cottey model [13, 14] which have been developed by 
introducing a specularity parameter, p, which depends 
explicitly both (either) on the angle of incidence, 0, of 
the conduction electron [7, 8~ 10-14] and (or) on the 
rms surface roughness, r[5-9, 11-14]. Among the 
recent works [9-14] the Soffer-Cottey (SC) model 
[13, 14] based on the combination of the Cottey theory 
[15] with the Softer model [7] leads to simple and 
analytical expressions for the conductivity of thin 
metal films and constitutes a convenient tool for an 
experimental determination of the surface roughness 
parameter in thin films. 

But the interest in a size effect model may be revived 
if this model gives analytical formulas for various 
transport parameters and thus permits to test, with 
efficiency, the adequation of the present model with 
experiments. Hence this paper is devoted to the study 
of the influence of the transverse magnetic field on the 
transport properties of thin metal films in the frame- 
work of the combined SC model which considers the 
contribution of the rms surface roughness and of the 
angle of incidence to the distribution function of elec- 
trons [13]. Emphasis is made to derive analytical 
expressions for the Hall coefficient and for the film 
conductivity in the limit of vanishingly small magnetic 
field and of very strong magnetic field. 
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2. General  theore t ica l  t r e a t m e n t  
2.1. The general solution of the Boltzmann 

equation 
In terms of the SC model a relaxation time z(O, r) 
describes the simultaneous background scattering and 
the electron scattering at the external surfaces respect- 
ively located at z = 0 and z = d. 

z(O, r) = z0(1 + A cos20i cos 0]) -1 (1) 

where T0 is the background relaxation time. The para- 
meter A contains the ratio of the rms surface rough- 
ness, r, to the wavelength, 2c, associated to the carrier 
and the ratio, k, of the film thickness, d, to the back- 
ground mean free path, 2o: 

1 (4~r'] 2 
A = ~ \--~-// (2) 

In this condition and for a geometry related to a metal 
film placed in an electric field E (Ex, Ey, 0) and a 
transverse magnetic field H(0, 0, H) the Boltzmann 
equation in isothermal conditions can be expressed as 

s* e.( OS l 
"v(O, r) m %, ~ -- Vx lTv,ll 

m ~ Jr Ey ~Vy) (3)  

where e is the absolute change of an electron, m is the 
effective electron mass, f l  is the deviation from the 
equilibrium distribution function, f0, caused by the 
external electrical and magnetic fields and vx and Vy 
are components of the free electron velocity v (absolute 
value v). 

Equation 3 is generally solved by following a 

0022-2461/87 $03.00 + .12 © 1987 Chapman and Hall Ltd. 



procedure previously proposed by Sondheimer [16] 
which consists 

(a) firstly, to let 

ef0 
f l  = (7.)xC 1 .jr_ 7.)yC2 ) (~v (4) 

where C~ and C2 are functions which do not depend 
explicitly on vx and %. 

(b) Secondly, to introduce the complex quantities 

g = C~ - jC2 (5a) 

F = E~ - jEy (5b) 

in order to rewrite the system of  the two following 
equations 

C t  e H  e 
- -  + - -  C2 - Ex (6a) r(0, r) m m v  

C2 eH e 
C 1 - Ey (6b) 

~(0, r) m mv 

which results from substitution of Equation 4 into 
Equation 1 in the final compact form 

g . v e F (7) 
r(O,r---~+J~ g - my 

Examination of  Equation 7 gives the immediate 
general solution 

e g - 
my 

II( 
- 70 l + cos 01cos 0 1 -  j v o)] 

r B / J  X (1t; [ (vv°~ 2] (1 + A cog01cos 0 f  + \ r B / J  

(8) 

where rB is the radius of the Larmor orbit of an 
electron moving in a magnetic field of magnitude H, 
i.e. 

mv 
rB - (9) 

eH 

Defining the field parameter 

~: = 20/% (10) 

the functions C1 and C2 are finally found to be 
expressed as 

M 
C1 - D(O) {Ex(1 + A cos20lcos 0l) i O~Ey} 

( l la )  

M 
C2 --  D(O) {Ey(1 + A cos20]cos 0]) + o~Ex} 

( l ib )  

where 

M = e%/mv  (12) 

and where for convenience D(O) is a function defined 
as 

D(O) = (1 + A cos20lcos 0[) 2 + c~ 2 (13) 

2.2. General expressions for the current 
density 

Since the current density along the i direction (i = 
x, y) is obtained by summing the /-component of 
the velocity of all the conduction electron, the com- 
ponents of  the current density are readily found to be 

• Ix = - 2 e  fJ'f b lV x ~ d3v (14a) 

Jy = - 2 e ( h ) 3 f f f  C2vZy af° ~ v  d3v (14b) 

The above integrals are to be evaluated by introducing 
polar coordinates (v, 0, qQ in the v space with 
% = v cos 0 and using Equations 1 la and 1 lb. After 
carrying the integration over v and qJ one obtains the 
final equations for the current density. 

Jx = 3 f f o { g x I 1  - -  c~EyI2} (15a) 

Jy = 3Cro{E,I, + c~ExI2} (lSb) 

where I1 and I 2 represent integrals over the variable 0 

I1 = roD- l (0 ){1  4- A cos201cos 01)} sing0d0 

(16) 

/2 = fo sin30 D-I(O) dO (17) 

After transforming the integration variable from 0 to 
u = cos 0 the electron current density in the x direc- 
tion and in the y-direction can be written in the alter- 
native forms 

Jx = ~a0{Exd - ~Ey~} (18a) 

Jy = 3 a o { E y d  + eEx~}  (18b) 

with 

;1 (1 + Au  3) (1 - u 2) 
d du (19) J0 (1 + Au3) 2 + ot 2 

1 - -  U 2 ;1 

Jo (1 + -A#? + =2 du (20) 

2.3. General expressions for the transport 
parameters 

Since the current is for the geometry of  the model 
confined to the x axis, the Hall coefficient, RHr, and 
the electrical conductivity, af, of  the metal film are 
respectively defined by 

Ey 
RHr -- H-)x Jy=0 (21) 

Jx J,=0 (22) 
0-f ~ Exx 

Thus the reduced Hall coefficient and electrical con- 
ductivity are readily found to be 

2 
RHr/RH° -- 3 ~ 2  + 0{2~2 (23) 

3 d 
af/ao - 2 .sJ 2 + ~2~2 (24) 
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where Rr~o and a 0 are respectively the Hall coefficient 
and the electrical conductivity of the bulk metal. 

Unfortunately Equations 19 and 20 cannot be, in 
general, expressed in terms of simple or tabulated 
integrals and numerical integration becomes necess- 
ary. However, it is possible to obtain analytical expres- 
sions for the transport parameters in the special cases 
of low and strong magnetic fields. The results of these 
calculations are expected to be sufficient to illustrate 
the effects of the rms surface roughness and of the 
angular dependence and to undertake a comprehen- 
sive comparison with the predictions of theoretical 
models [16-18] which assume that the electron scat- 
tering at the film surfaces can be described by a con- 
stant specularity parameter. 

3. Analyt ical  expressions for the 
transport  parameters 

At this point it should be noticed that published 
results [13, 14] on the film conductivity in absence of 
magnetic field have revealed that 

(1) In general, the conditions of validity of the com- 
bined (SC) model extend without ambiguity to about 
r/2~ ~- 0.15. 

(2) The experimental determination of the surface 
roughness parameter in metal films remains very easy 
for small A. 

Hence for these reasons we restrict our calculations to 
metal films with relatively smooth surfaces (r/2~ < 0.2) 
or to relatively thick films (k > 0.4), namely for films 
with small values of the size parameter A even if the 
analytical expressions derived later in the special case 
of strong magnetic fields applied over a larger range of 
values of A. The conditions retained in this section are 
effectively met in many experiments [19-26]. 

3.1. The limit of small magnetic fields 
The functions (and Equations 19 and 20) can be 
analytically evaluated by expanding the integrals firstly 

i n  ascending power of the field parameter ~ and 
secondly in ascending power of Au 3. Retaining only 
terms of power two for ~ and A the integration yields 

s¢ 2 A 2A 2 ~2{~ A 4A2"~ 
~ - 5 -  l - 5 + ~  - -  - -4 + 5 i - ] '  

A < 1, c~ ,~ 1 (25) 

2 A 2A2 _ c~z {2 A 20A2"~ 

- 3  6 + - ~  - - 3 - +  63 J'  

A < 1,~ < 1 (26) 

The transport parameters, err, and Rr~f can then be 
easily evaluated using the respective general Equations 
24 and 23. 

3.2. The limit of strong magnetic fields 
In order to evaluate RHf and ~r we now expand 
Equations 19 and 20 in ascending power of (1 + 
Au3)2/c~ 2. The expressions for ~¢ and ~ are consider- 
ably simplified and after carrying out the integrations 

one obtains the following analytical equations 

d - - - ~  l + ~ - - c ~  ~ l + y + ~ - + ~  , 

(A + 1)/e < 1 (27) 

l+ -+ST , 

(A + 1 (28) 

The appropriate numerical values for RHf and ~r are 
obtained as before by substituting d and ~ from 
Equations 27 and 28 into the general formulas. 

Moreover examination of Equation 27 and 28 
reveals that in the limits of small A and very strong 
magnetic fields ar and RHf can be respectively approxi- 
mated by the following simple forms 

ar/ao - 1 + , A ~ 1, c~ ~> 1 (29) 

RHr/RHo ~- 1, A ~ 1,~ >> 1 (30) 

4. Discussion 
4.1. Presentation of theoretical results 
Before embarking on the presentation of theoretical 
results let us state that we shall primarily concern 
ourselves here with a comparison of the present model 
with two theoretical models, namely the Sondheimer 
model [16] and the mean free path (mfp) model pre- 
viously derived by Tellier et al. [17] and based as in the 
Cottey model [15] on the definition of an effective 
relaxation time. Thus in this section we collect the 
numerical solutions of Equations 23 and 24 which 
have been evaluated for different values of the para- 
meters, k, r/2o and ~ using the appropriate approxi- 
mate expressions for d and ~ .  

In Fig. 1 plots of the conductivity ratio, %/o-f, 
against the reduced roughness, r/2c, are shown for 
different values of the field parameter, ~, and for 

1 . 2  l 

g- 

1 . 1 -  

1 
0.001 

/ '  

0.01 0.1 
r / x  c 

Figure 1 The surface roughness variation of the conductivity ratio, 
ao/a f for different values of the field parameter, ~ ([]) e = I00, (A) 
c~ = 40, (O) u = 0.1, (0) c~ = 0.01. 
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Figure 2 Variations in the conductivity ratio, o-0/of, with the reduced 
thickness, k, in the weak-field limit (a = 0.04). Full curves are for 
the present model. The dotted curve is the result of  the mfp method 
fo rp  = 0.9. In the inset are shown the corresponding variations in 
the conductivity ratio in the strong-field limit (c~ = 40). (,t) 
r/2 c = 0.06 (e )  rI2¢ = 0.04, ( i )  r/2~ = 0.02. 

k = 1. These curves indicate that in a relative 
independency of the magnetic field strength the film 
conductivity decreases markedly with increasing rms 
surface roughness. Representative variations of the 
conductivity ratio as a function of the reduced thick- 
ness are shown in Fig. 2 for different values of the field 
parameter and of the mas surface roughness. Here the 
predicted behaviour agrees closely with the Sondheimer 
and the mfp models [16, 17], the ao/a f ratio decreases 
rapidly and approaches unity as the reduced thick- 
ness, k, tends to infinity. 

For relatively large thicknesses and for relatively 
smooth surfaces the numerical evaluation of the con- 
ductivity ratio reveals that the effect of a magnetic 
field remains of slight importance with respect to the 
consequence of the limitation of the mean free path 
and of the rms surface roughness (see Fig. 1 for 
example). Thus a convenient scheme for displaying 

the effect of the field variation is through the mag- 
netoresistance defined by the ratio 

/~Of Qr(H) -- qr(0) 
= (31) 

~r,0 q f(0) 

Representative results are shown in Fig. 3 for two 
values ofr/2¢ and for k = 1. From these curves we see 
that the magnetoresistance AQr/Qf,0 is small and is a 
slowly varying function of the field parameter ~ which 
will not exceed 2% in the strong-field limit. However 
let us note that the transverse magnetoresistance is 
extremely sensitive to peculiarities of the Fermi sur- 
face and that a model based on the quasi-free electron 
approach will lead to theoretical values of magneto- 
resistance which are orders of magnitude smaller than 
experimental values. Obviously here we restrict our- 
selves to an additional magnetoresistance depending 
on sample dimensions and on surface irregularities 
which will be observable in some metals [27]. Indeed 
an interesting feature of the limiting magnetoresist- 
ance is its dependence on the size parameter A. The 
anomalous large magnetoresistance one can observe 
in intermediate magnetic fields is the result of devi- 
ations from the validity conditions imposed in the 
derivation of the approximate expressions for ~¢ and 
~ .  In reality A0r/~f,0 will never attain such magnitudes, 
and more realistic plots of the expected magnetoresist- 
ance in the intermediate field region are drawn (dotted 
curves) in Fig. 3 where a monotonically increase of the 
magnetoresistance with the field parameter a is 
assumed. 

From Equations 23 and 25-28, we see that the Hall 
coefficient of film reduces to the value of the bulk 
material with increasing magnetic fields. In fact in the 
case of slight surface effects small deviations from the 
bulk behaviour are always expected and the influence of 
the transverse magnetic field remains too small (see 
Equations 23 and 24 for example) to give rise to 
specific size effects even in vanishing magnetic fields. 
Numerical results displayed in Tables I and II agree 
well with these observations. The dependence of the 
Hall coefficient on the magnetic field appears as very 
weak provided A ~ 1. Moreover the size effect in the 
variation of the Hall coefficient with either the film 
thickness or the rms surface roughness is much lower 

1.2 

0.8 

s£ 

<3 

0.4 

0 
0.01 

I/i/i/ /'''''~ 

i I 

[ I I 
0.1 1 10 100 

Figure 3 Field dependence of the mag- 
netoresistance for k = 1 and for different 
values o f  the rms surface roughness (A) 
r/2 c = 0.06, (o)  r/2c = 0.04. The dotted 
curves correspond to the expected field 
dependence of the magnetoresistance in 
the intermediate field region. 
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T A B L E  I Field and surface roughness variations of the Hall 

coefficient ratio Rnf/Rno choosing a typical value of 1 for the 
reduced thickness, k. Omitted values correspond to deviations from 
the conditions of applicability of the approximate equations 

r/2 c e = 0.01 ~ = 0.1 e = 10 e = 100 

0.01 1.00001 1.00011 1.00010 1.00000 
0.04 1.00236 1.00242 1.00013 1.00000 
0.06 1.01378 1.01370 1.00024 1.00000 

0.1 - 1.00107 1.0001 

T A B L E  I I  The field variation of the Hall coefficient ratio, 
Rn~/Rno for moderately rough film surfaces (r/2c = 0.04): influence 
of the film thickness 

k ~ = 0.01 ~ = 0.1 ~ = 10 ~ = 100 

0.1 - 1.00257 1.00002 
0.4 1.01741 1.01731 1.00027 1.00000 
i 1.00236 1.00242 1.00013 1.00000 
4 1.00013 1.00023 1.00010 1.00000 

10 1.00002 1.00012 1.00010 1.00000 

in magnitude than the variation in the electrical con- 
ductivity. Effectively in the weak- and strong-field 
limits the relative variations in Rnf with A are less than 
2% for A in the range 0.001-0.5. 

4.2. Comparison with other models  
At the first sight the present model leads to rough 
agreement with previous theoretical models [16, 17] 
which treated the size effect in the Hall coefficient by 
using a constant specularity parameterp. Indeed in the 
weak-field limit the Hall coefficient, Rnr, in thin films 
is greater than the bulk value RHo, and the behaviour of 
the film approaches that of a bulk specimen in the 
strong-field limit. To make the comparison more sig- 
nificant we have tabulated (Table III) the numerical 
values for the Hall coefficient as evaluated in terms of 
the present model and in terms of the mfp model. The 
value of 0.9 has been selected for the constant spe- 

cularity parameter p since it has been found to corre- 
spond nearly to a reduced surface roughness of about 
0.04 when the electron reaches the film surface at an 
incidence angle of about 45 ° . Actually, the discrepan- 
cies between the mfp model and the present model are 
frequently fairly small (Table III) for the Hall coef- 
ficient. In particular we do not observe that the major 
feature of the SC model is a diminution of the overall 
size effect in this transport parameter as previously 
established for the electrical conductivity in the 
absence of a magnetic field [13]. But since in the c~, A 
or # ranges investigated here the Hall coefficient of 
films are restricted to values close to the bulk value it 
remains difficult to draw firm conclusions. Thus in 
view of the features just discussed some tabulations 
concerned with the film conductivity have been 
inserted (Table IV) to allow a comparison between 
the orders of magnitude and between the essential 
features displayed by the two models. Inspection of 
Table IV reveals at once that in the weak- and strong- 
field limits the SC model does not yield the same 
conductivity as in the mfp model: a decrease in the 
overall size effect is still caused by incorporating 
angular and rms surface roughness effect just as 
predicted in a previous study when H = 0 [13]. 

Thus at this point it appears to be interesting to 
consider precisely what might happen if the specular- 
ity parameter can no longer be considered as constant. 
This is best undertaken by comparing in details the 
analytical expressions for the function d and s8 as 
derived respectively in terms of the mfp model and the 
SC model. In the framework of the mfp model and in 
the weak-field limit the function d *  and M* are 
expanded in the forms [18] 

~¢, _ ~, 7,# , +  e2 ~ a*# i (32) 
i=0 i~0 

N'* ~ ~, B * # - i +  e2 ~ b*# ' (33) 
i = 0  i=0 

T A B L E  I I I  The Hall coefficient ratio Rnf/Rno for different values of the reduced thickness, in the strong field limit we are restricted 
to relatively small k since for k > 0.4 inaccuracies of the numerical work of the mfp method causes the development of oscillations of the 

Hall coefficient ratio 

k Weak-field limit: e = 0.04 k Strong-field limit: c~ = 40 

Present model mfp model Present model mfp model 

(r/2 c = 0.04) (p = 0.9) (r/2o = 0.04) (p = 0.9) 

0.4 1.01740 1.00300 0.01 1.01432 1.00362 
1 1.00236 1.00054 0.04 1.00081 1.00023 
4 1.00013 0.99996 0.I 1.00013 1.00056 

10 1.00002 0.99893 0.4 1.00001 0.99997 

T A B L E  IV The thickness variation of the conductivity ratio ao/a r as evaluated in the framework of the mfp method and of the 

combined SC model 

k Weak-field limit: c~ = 0.04 k Strong-field limit: ~ = 40 

Present model mfp model Present model mfp model 
(r/2, = 0.04) (p = 0.9) (r/2 c = 0.04) (p = 0.9) 

0.4 1.06382 1.09042 0.01 3.99184 4.72959 
1 1.02939 1.03693 0.04 1.7864 1.93697 
4 1.00777 1.00932 0.1 1.31555 1.37522 

l0 1.00314 1.00347 0.4 1.07895 1.10467 
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T A B L E  V The coefficients of expansion is given in the frame- 
work of the mfp model [17] and of the present model 

i mfp model SC model 

7* B* y*/a* B*/b* 7g/a, B,/b, 

0 z z --1 --1 - 1  --1 3 3 

1 -~ _½ __1~ _½ _~ _½ 
2 -~, -~  -~  - ~  -~  ?o 

where # is the Cottey size effect parameter generally 
defined as 

{(1)} 
g = k on (34) 

Values of the low-order coefficients (i = 0, 1, 2) are 
listed in Table V. 

Turning to Equation 25 and 26, one obtains the 
alternative forms for d and 

d ~-- ~ 7i Ai + O~ 2 ~ aiA ~ (35) 
i = 0  i = 0  

~- ~ BiAi + ct 2 ~ b,A' (36) 
i = 0  i = 0  

For i varying from 0-2  the coefficients just defined in 
the above equations are also displayed in Table V. 
From this table we see that the values of the ratios yi/ai 
and bi/Bi are the same as the values of ratios appearing 
in Equations 32 and 33. This analogy is not surprising 
since values of coefficient ratios do not depend on the 
assumptions about the specularity parameter but are 
primarily determined by the procedure chosen to solve 
the transport Boltzmann equation. But Table V also 
displays a more interesting result. Until the size effect 
cannot significantly influence the transport properties 
(A < 1 or /x > 1) a clear correspondence can be 
established between the size parameter A and # 

A ~ 3# 1 (37) 

which is just the result obtained by Tellier [14] when 
the film is subjected only to the action of an electric 
field. 

But the interest in this correspondence is revived if 
its range of applicability extends to moderate and 
strong fields. Remember that according to previously 
published results [16, 17] the mfp analysis must yield 
simple limiting equations for the transport parameters 
in strong magnetic field 

R*f/Ruo -~ 1 (38) 

3 
ao/a[ ~ -~ 1 + 8# (39) 

Now considering Equation 29 we can conclude that in 
the special case of slight size effects the new limiting 
expressions for the transport parameters can be easily 
derived from expressions previously presented in the 
mfp model since it seems sufficient to replace the size 
parameter # by the SC term 3/A. 

4.3. Comparison with experimental works 
It should be pointed out that in this section we 
are essentially concerned with experimental works 

[22-26] which were performed at room-temperature 
on well annealed films. Indeed for thoroughly 
annealed film it is reasonable to suppose that a 
reordering of the film surface occurs [1, 3, 28-31] 
causing the size parameter A to take relatively small 
values. Moreover we restrict ourselves to tem- 
peratures and thicknesses in which quantum size 
effects and Shubnikov de Haas oscillations [22] do not 
occur. 

Hoffman and Frankl [22] measured at 300 K the 
Hall coefficient and the magnetoresistance of well- 
ordered bismuth films. At room temperature, the 
magnetoresistance of relatively thin films was found to 
be practically independent of field. Also in the work 
on bismuth films by Ineou et al. [24] a quite similar 
feature was reported for the magnetoresistance which, 
at room temperature, remained smaller than 4%. 
Data on magnetoresistance in silver-gold films [26] 
showed small A0/0 values which did not exceed 3%. 
These behaviours agree with the slight magnetoresist- 
ance effect predicted by the present model. 

Tabulated results on the Hall coefficient (Tables I 
and II) give some evidence for a weak field dependence 
of the Hall coefficient for A < 1. The experimental 
behaviours of RHf as a function of field H in silver films 
[23] and in silver-gold films [26] conformed nearly to 
this theoretical feature. 

Measurement of the Hall coefficient in thin gold 
films by Jeppesen [25] revealed no appreciable vari- 
ation in the Hall coefficient for films which varied in 
thickness from 3-200 nm. Also Viard et al. [23] as well 
as Bhattacharya and Bhattacharya [26] observed 
slight size effects in the Hall coefficient of silver films. 
Hoffman and Frankl [22] found that in thin bismuth 
films the Hall coefficient and the magnetoresistance 
varied smoothly with the film thickness. 

We thus observe that some predictions of the 
present model concerned with the field dependence of 
the transport parameters and with the size effects in 
the Hall coefficient and the magnetoresistance are 
confirmed by various experimental works. 

5. Conclusion 
In the presence of a transverse magnetic field new 
general equations are derived for the electrical con- 
ductivity and the Hall coefficient taking into account 
that the specularity parameter depends on the angle of 
incidence of the carriers and on the rms surface rough- 
ness. In the weak- and strong-field limits simple 
expressions for these transport parameters can be 
obtained which are found to be convenient to reveal 
some interesting features of the Hall coefficient and 
the magnetoresistance. It is predicted that the mag- 
netoresistance is weakly dependent on the field and the 
size parameter A, in good agreement with published 
results. In the case of slight size effects (A < 1) in films 
the Hall coefficient follows nearly a similar behaviour. 
Comparison with the theoretical predictions of the 
mfp model which assumes that the specularity para- 
meter, p, appearing in the size parameter # is constant, 
gives some evidence for a simple correlation between 
the parameters A and # provided A < 1. 
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